JOURNAL

OF THE AMERICAN CHEMICAL SOCIETY

Registered in U.S. Patent Office. © Copyright, 1980, by the American Chemical Society

VOLUME 102, NUMBER 20

September 24, 1980

Gaseous HCN⁺, HNC⁺, and HCNH⁺ Ions¹

Fred W. McLafferty* and Donald C. McGilvery

Contribution from the Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853. Received March 24, 1980

Abstract: Two isomers of CHN⁺ can be identified from their collisional activation mass spectra. Molecular HCN ions are predominantly the HCN⁺ isomer, but decomposition of a wide variety of N-organic ions produces only the more stable HNC⁺ isomer. Of the three possible isomers of CH_2N^+ , only HCNH⁺ is found to be produced by a variety of decomposition and ion-molecule reactions. Formation of these ions in the mass spectra of CH₃CN and CH₃NC is unusual in involving the neutral loss of CH₂ and CH, which apparently is due to the large stabilization resulting from the addition of one and two hydrogens to CN⁺.

Molecular HCN is stable, while its isomer HNC has been observed only as a transient species.² In contrast, the HNC⁺ ion is more stable than its HCN⁺ isomer by 1.3 eV according to theoretical calculations,³ and by 0.6 eV from charge exchange experiments.⁴ In the latter ground-state formation of the isomers HCN⁺ from HCN ionization and HNC⁺ by unimolecular decomposition of CH₃NC⁺ and CH₃NH₂⁺ was assumed. We report here a further investigation utilizing collisional activation (CA) mass spectra⁵ of the formation of these CHN⁺ isomers over a range of energies from a variety of precursors. Because the isobaric $C_2H_3^+$ (m/z 27) ions commonly occur in mass spectra from background as well as fragmentation, this study utilized a CA instrument capable of high resolution separation of such interfering ions.6

The reported⁴ formation of HNC⁺ from CH₃NC is of particular interest because this must involve the loss of CH2:, a neutral loss that is highly unusual in mass spectra.⁷ Our initial examination of the mass spectrum of CH₃NC not only confirmed the formation of CHN⁺ (2% of base peak), but also showed a more abundant CH_2N^+ peak (3%) formed by the even more surprising loss of CH. Further, we find that CH₃CN⁺ also shows similar losses of CH as well as CH_2 . CH_2N^+ ions have attracted substantial interest with reference to their role in the interstellar formation of HCN and HNC. Although H_2CN^+ has been suggested as the stable isomeric structure,⁸ theoretical calculations by Schaefer⁹ predict that the linear HCNH⁺ is the most stable isomer, with CNH_2^+ and H_2CN^+ being 2.0 and 3.1 eV, respectively, less stable.

Experimental Section

The tandem CA mass spectrometer⁶ used has a high-resolution Hitachi RMH-2 as MS-I. Ions formed by 70-eV electrons or by chemical ionization (CI) are accelerated by 10 keV, separated by MS-I, and made to undergo collisions with a helium molecular beam; the resulting CA product ions are separated by an electrostatic analyzer used as MS-II. The helium flow rate was increased until the precursor ion abundance was reduced to 40% of its original value; at an equivalent pressure, the abundance of a precursor ion such as $C_2H_2^+$ would be reduced to ~10% of its original value. Spectra were computer averages of ~ 20 scans; the data for CH_2N^+ from CH_3NC and CH_3CN are averages of ≥ 5 such runs. Confirmatory data were also measured on a reverse-geometry RMU-7 double-focusing mass spectrometer¹⁰ using 8-keV precursor ions, but only representative CA data for CHN⁺, corrected for $C_2H_3^+$ interference, are reported.

The RMH-2-separated precursor CHN⁺ ions (m/z 27.0109) con-tained less than 2% C₂H₃⁺ ions (27.0235) based on m/z 25 in the CA spectrum. Measuring the CA spectra of CH₂N⁺ (m/z 28.0187) required MS-I separation of $H^{13}CN^+$ (28.0143), which differs by 1/6400, as well as of N_2^+ (28.0061) and CO⁺ (27.9949). Care had to be taken to avoid drift of MS-1 off the CH₂N⁺ peak during the multiple scanning of its CA spectrum; H¹³CN⁺ contamination increases $[m/z \ 14^+]/[12^+]$. The CHDN⁺ precursor ion was separated from CD¹⁵N, ¹³CDN⁺, C¹³CD₂⁺, and C2HD2+.

Protonation used to prepare precursor ions for reported CA spectra was done with H₂O as the CI reagent gas. Self-protonation of HCN gave the same CA spectrum of CH_2N^+ within experimental error.

Appearance energies, measured by the vanishing current method, were of poor accuracy because of the low ion abundance at high resolution. The CN⁺ data also tailed badly.

Methyl isocyanide was synthesized by a standard literature procedure,¹¹ and the other compounds were obtained commercially.

⁽¹⁾ Collisional Activation and Metastable Ion Characteristics. 79. Paper Collisional Activation and Metastable Ion Characteristics. 79. Paper 78: McLafferty, F. W.; Hirota, A.; Barbalas, M.; Pegues, R. F. Int. J. Mass Spectrom. Ion Phys., 1980, 35, 299.
Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1967, 47, 278.
von Niessen, W.; Cederbaum, L. S.; Domcke, W.; Diercksen, G. H. F. Mol. Phys. 1976, 32, 1057.
Bieri, F.; Jonsson, B.-O. Chem. Phys. Lett. 1978, 56, 446.
McLafferty, F. W.; Bente, P. F., III; Kornfeld, R.; Tsai, S.-C.; Howe, I. J. Am. Chem. Soc. 1973, 95, 2120; McLafferty, F. W. Phil. Trans. R. Soc., London, Ser. A 1979, 293, 93-102.
McLafferty, F. W.; Todd, P. J.; McGilvery, D. C.; Baldwin, M. A. J. Am. Chem. Soc. 1980, 102, 3360

Am. Chem. Soc. 1980, 102, 3360.

⁽⁷⁾ Colton, R.; Porter, Q. N. Aust. J. Chem. **1968**, 21, 2215. McLafferty, F. W. "Interpretation of Mass Spectra," 2nd ed.; Benjamin-Addison-Wesley: Reading, Mass., 1973; p 34.

⁽⁸⁾ Watson, W. D. Astrophys. J. 1974, 188, 35.

 ⁽⁹⁾ Schaefer, H. F., III. Acc. Chem. Res. 1979, 12, 288.
(10) Wachs, T; Van de Sande, C. C.; Bente, P. F., III; Dymerski, P. P.; McLafferty, F. W. Int. J. Mass Spectrom. Ion Phys. 1977, 23, 21-7.

Table I. Collisional Activation Spectra of C(H,D)N⁺ Ions

	m/z							
compd	12	13	14	15	16	26		
HCN	2.7	2.7	1.5	0.4		100		
a	2.7	3.0	1.4	0.5		b		
20 eV ^{a, c}	2.7	3.2	1.4	0.5		b		
DCN	4.0		7.2		0.9	100		
CH ₃ NC	3.7	1.9	1.9	1.5		100		
a	3.7	1.5	1.5	1.3		b		
$CH_3NH_2^a$	3.7	1.2	1.3	1.4		Ь		
$HCONH_{2}^{a}$	3.7	1.3	1.4	1.6		b		
CH, CN	3.6	2.0	1.5	1.2		100		
$HCON(CH_3)$,	3.7	1.7	1.5	1.3		100		
pyridine	3.9	2.3	1.6	1.1		100		
benzonitrile	3.7	2.2	1.9	0.9		100		

^a Data from RMU-7; other data on the tandem/RMH-2 instrument. ^b RMU-7 determination of [12⁺]/[26⁺] inaccurate, so [12⁺] value of tandem instrument assumed. ^c Ionizing electron energy 70 eV unless otherwise specified.

Table II. Collisional Activation Spectra of C(H,D), N⁺ Ions

	m/z									
compd	12	13	14	15	16	17	18	26	27	28
$HCN + H^+$	2.1	1.5	1.4	1.2	0.4			22	100	
$HCN + D^{+a}$	1.7	1.0	1.2	0.2	1.5	0.4		19	36	67
$CH_3CN + D^{+a}$	1.7	1.2	1.4	0.6	1.0	0.2		13	32	77
$DCN + H^{+a}$	1.3	0.4	2.3	0.8	0.2	0.2		17	42	62
$CD_3CN + H^{+a}$	1.6	0.5	2.3	1.1	0.8	0.3		20	40	62
$DCN + D^+$	1.8		3.8	0.8 ^b	2.2		0.4	18		100
CH ₃ NC	2.1	1.6	1.6	1.3	0.4			24	100	
CH ₃ CN	1.9	1.5	1.7	1.3	0.3			21	100	

^{*a*} Using CHDN⁺ as the precursor ion. Abundances are normalized to the base $[CN^+] + [C(H,D)N^+] = 122; [CHDN^{2+}] = 0.8.$ b CD₂N²⁺.

Results and Discussion

In confirmation of the results obtained by charge exchange,⁴ the CA spectra of CHN⁺ ions from methyl isocyanide and methylamine are the same, and differ significantly from the spectrum of CHN⁺ ions from HCN (Table I). These spectra are consistent with the structures HNC⁺ and HCN⁺, respectively, as the spectrum of the former shows more abundant HN^+ ions, and that of the latter has more abundant HC⁺ ions. Assuming equivalent CA cross sections, [HN⁺] indicates that the molecular ions from HCN contain <30% of the HNC⁺ isomer; however, the true value is probably much less than this, as HN⁺ is probably formed from HCN⁺ by rearrangement in the same way that HC⁺ is formed from HNC⁺. Also lowering the ionizing electron energy does not change the CA spectrum from HCN appreciably.

The HNC⁺ isomer is clearly the more stable.^{3,4} This is the only isomer observed (Table I) for CHN⁺ ions formed by mass spectral fragmentation of CH₃NH₂, CH₃NC, CH₃CN, HCONH₂, $HCON(CH_3)_2$, pyridine, and benzonitrile. However, the energy barrier for the exothermic isomerization $HCN^+ \rightarrow HNC^+$ can only be determined qualitatively from these data. Although for HCN ionization the appearance energy of the lowest energy dissociation process (H loss) is 5.8 eV above the ionization energy,¹² the photoelectron spectrum¹³ indicates that >90% of the molecular ions are formed with <0.5 eV internal energy, so that this is the highest minimum value which can be derived for the

McLafferty, McGilvery

 $HCN^+ \rightarrow HNC^+$ barrier from these data.

 CH_2N^+ Ions. The CH_2N^+ ions (Table II) formed by protonation of HCN (using H_2O or HCN) and by unimolecular dissociation of CH_3CN and CH_3NC all give the same CA mass spectrum within experimental error, indicating that they have a common structure. Of the three possible structures H_2CN^+ . HCNH⁺, and CNH₂⁺, only one (HCNH⁺) has hydrogen atoms which are nonequivalent. CHDN⁺ ions were made in two ways, chemical ionization of HCN using D₂O as the reagent gas, and of DCN using H₂O as the reagent gas. Their CA spectra (Table II) are substantially different, supporting the structure $HC \equiv N^+H$, which has been predicted to be the most stable.9 These CA spectra are also consistent with the expected structures HCND⁺ and DCNH⁺, respectively. The m/z 13 (CH⁺) and 16 (DN⁺) are larger in the presumed HCND⁺ spectrum, and m/z 14 (CD⁺ + N^+) and 15 (HN⁺) are larger in the DCNH⁺ spectrum. Chemical ionization of CD₃CN with H₂O as the reagent gas gives CHDN⁺ fragment ions whose CA spectrum resembles that of DCNH⁺, and chemical ionization of CH₃CN with D₂O gives CHDN⁺ ions whose CA spectrum resembles the HCND⁺ spectrum. The values of $([m/z \ 13^+] + [16^+])/([14^+] + [15^+])$ indicate the majority of $CH_3C \equiv N^+H'$ ions formed by the protonation of CH_3CN yield HC≡N⁺H' ions without H-H' scrambling. Despite the mechanistic diversity of the reactions forming HCNH⁺ from CH₃CN⁺, CH_3NC^+ , and CD_3CNH^+ , and by chemical ionization, in none is there evidence for concomitant CNH_2^+ formation (such as an increased CA abundance of NH_2^+); CNH_2^+ is predicted⁹ to be 2.0 eV less stable than HCNH⁺, but to have a 1.3-eV isomerization barrier.

The CA spectra of HCND⁺ and DCNH⁺ also provide further evidence of the higher stability of HNC⁺ vs. that of HCN⁺. For HCNH'⁺ the loss of H is $\sim 15\%$ greater than the loss of H' after offsetting the isotope effects.

Losses of Neutral CH and CH2. Peaks in electron ionization (EI) mass spectra due to the loss of CH₂ are unusual; for example, this accounts for a 2% peak in the mass spectrum of $(C_6H_5)_2P_2$ $CH_2P(C_6H_5)_2$.⁷ Confirming the EI spectral behavior of CH_3CN and CH₃NC reported above, their CA spectra show m/z 26, 27 and 28 abundances (total of m/z 12–40 = 100%) of 2.4, 2.4, and 3.8%, respectively, for CH₃CN⁺, and 2.0, 2.4, and 3.4%, respectively, for CH₃NC⁺. Further, the CA spectrum of CD₃C \equiv N⁺H shows abundances (total of m/z 12–44 = 100%) from losses of CD₂, CHD, and CD of 3.5, 2.7, and 1.8%, respectively.

Appearance energy determinations for CH₃CN and CH₃NC, respectively, gave CN^+ , 20 and 20 eV; CHN^+ , 15 and 15 eV; and CH_2N^+ , 16 and 15 eV. (The photoelectron spectrum of CH_3CN , ionization energy 12.2 eV, shows almost no ion formation in the range 13.2-15.1 eV.)¹³ Based on heats of formation,¹⁴ the dissociation of CH₃CN⁺ to lose CH₃, CH₂, and CH requires 6.9, 5.3, and 2.6 eV/mol, respectively, somewhat higher than indicated by the measured appearance energies. The favorable energies for the losses of CH₂ and CH vs. that of CH₃ more than offset the severe entropic requirements of the accompanying hydrogen rearrangements. This case is unusual because the addition of one or two hydrogens to CN⁺ stabilizes it by 3.6 or 8.9 eV;¹⁴ for comparison, the corresponding stabilizations for $C_2H_3^+$ are 0.5 and 2.2 eV.12

Acknowledgment. The authors are indebted to P. J. Todd, M. A. Baldwin, and B. K. Carpenter for helpful discussions, and to the National Institutes of Health (Grant GM16609) for generous financial support.

⁽¹¹⁾ Jackson, H. L.; McCusick, B. C. Org. Synth. 1963, 46, 75.

 ⁽¹²⁾ Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys.
Chem. Ref. Data 1977, 6, Suppl. 1.
(13) Turner, D. W.; Baker, C.; Baker, A. D.; Brundle, C. R. "Molecular Photoelectron Spectroscopy"; Wiley: London, 1970; pp 349–350.

⁽¹⁴⁾ Heat of formation, kcal/mol: CH, 142; CH₂, 94; CH₃, 34; CH₃CN⁺, 304; CH₃NC⁺, 296; CN⁺, 429; HCN⁺, 346; ¹² HNC⁺, \sim 332; ⁴ HCNH⁺, 223.¹⁵

⁽¹⁵⁾ Wolf, J. F.; Staley, R. H.; Koppel, I; Taagepera, M.; McIver, R. T.; Beauchamp, J. L.; Taft, R. W. J. Am. Chem. Soc. 1977, 99, 5417.